休闲游戏

解析孤立奇点与留数:零点、极点分类与计算

文章目录

1. 孤立奇点1.1 零点1.1.1 判断零点阶数

1.2 孤立奇点1.2.1 孤立节点的分类

1.3 判定极点的阶数[12]

2. 留数2.1 留数的概念2.2 留数的计算方法[13]

1. 孤立奇点

1.1 零点

定义 若

f

(

z

0

)

=

0

f(z_0) =0

f(z0​)=0,则

z

=

z

0

z=z_0

z=z0​为f(z)的零点 若

f

(

z

)

=

(

z

z

0

)

m

ϕ

(

z

)

f(z)=(z-z_0)^m \phi(z)

f(z)=(z−z0​)mϕ(z),

ϕ

(

z

)

\phi(z)

ϕ(z)在

z

0

z_0

z0​处解析且值不为0,则

z

=

z

0

z=z_0

z=z0​为f(z)的m阶零点

1.1.1 判断零点阶数

方法1: 求导

f

(

m

)

(

z

0

)

=

0

f^{(m)}(z_0) = 0

f(m)(z0​)=0 方法二:级数展开提取公因式

(

z

z

0

)

(z-z_0)

(z−z0​)

f

(

z

)

=

(

z

z

0

)

m

ϕ

(

z

)

f(z)=(z-z_0)^m \phi(z)

f(z)=(z−z0​)mϕ(z)

1.2 孤立奇点

定义 设

z

0

z_0

z0​为f(z)的奇点,其存在

δ

>

0

\delta >0

δ>0,使得f(z)在去心领域

0

<

z

z

0

<

δ

0<|z-z_0|<\delta

0<∣z−z0​∣<δ内解析

1.2.1 孤立节点的分类

定义 若

z

0

z_0

z0​为f(z)的孤立奇点,将f(z)在

0

<

z

z

0

<

δ

0<|z-z_0|<\delta

0<∣z−z0​∣<δ内展开为洛朗级数

f

(

z

)

=

+

(

z

z

0

)

n

f(z) = \sum_{-\infty}^{+\infty}(z-z_0)^n

f(z)=−∞∑+∞​(z−z0​)n

(1)可去奇点 若

n

<

0

,

a

n

=

0

\forall n <0,a_n=0

∀n<0,an​=0,则为可去奇点(解析) 判定方法:

lim

z

z

0

f

(

z

)

=

c

\lim_{z \to z_0} f(z) = c

z→z0​lim​f(z)=c

(2)N阶极点 若f(z)含N个负幂次项

a

n

(

n

<

0

)

a_n(n<0)

an​(n<0),则

z

0

z_0

z0​称为f(z)的N阶极点 当N=1时,

z

0

z_0

z0​为f(z)的简单极点 判定方法

lim

z

z

0

f

(

z

)

=

f

(

z

)

=

1

(

z

z

0

)

N

(

a

N

+

a

N

+

1

(

z

z

0

)

+

)

\lim_{z \to z_0} f(z) = \infty \\ f(z) = \frac{1}{(z-z_0)^N}(a_{-N}+a_{-N+1}(z-z_0)+\cdots)

z→z0​lim​f(z)=∞f(z)=(z−z0​)N1​(a−N​+a−N+1​(z−z0​)+⋯)

(3)本性奇点 若

N

<

0

,

n

<

N

,

a

n

0

\forall N <0, \exist n

∀N<0,∃n

z

0

z_0

z0​称为f(z)的本性奇点 判定方法

lim

z

z

0

f

(

z

)

\lim_{z \to z_0} f(z) 不存在

z→z0​lim​f(z)不存在

1.3 判定极点的阶数[12]

f

(

z

)

=

ϕ

(

z

)

ψ

(

z

)

=

(

z

z

0

)

m

ϕ

1

(

z

)

(

z

z

0

)

n

ψ

1

(

z

)

f(z)=\frac{\phi(z)}{\psi(z)}=\frac{(z-z_0)^m \phi_1(z)}{(z-z_0)^n\psi_1(z)}

f(z)=ψ(z)ϕ(z)​=(z−z0​)nψ1​(z)(z−z0​)mϕ1​(z)​,则: (1)当 m >= n时,

z

0

z_0

z0​为f(z)的可去奇点 (2)当 m < n时,

z

0

z_0

z0​为f(z)的(n-m)阶极点 可以通过洛朗级数转换判定奇点类型

2. 留数

2.1 留数的概念

定义

f

(

z

)

d

z

=

+

a

1

z

z

0

+

R

e

s

[

f

(

z

)

,

z

0

]

=

a

1

=

1

2

π

i

f

(

z

)

d

z

\oint f(z)dz = \cdots + \oint \frac{a_{-1}}{z-z_0}+\cdots \\ Res[f(z),z_0] = a_{-1} = \frac{1}{2 \pi i} \oint f(z)dz

∮f(z)dz=⋯+∮z−z0​a−1​​+⋯Res[f(z),z0​]=a−1​=2πi1​∮f(z)dz

2.2 留数的计算方法[13]

1. 可去奇点

a

1

=

0

a_{-1} = 0

a−1​=0 2. 本性奇点

a

1

=

a

n

=

1

2

π

i

f

(

z

)

(

z

z

0

)

n

+

1

d

z

=

f

(

n

)

(

z

0

)

n

!

a_{-1} = a_n = \frac{1}{2 \pi i} \oint \frac{f(z)}{(z-z_0)^{n+1}}dz=\frac{f^{(n)}(z_0)}{n!}

a−1​=an​=2πi1​∮(z−z0​)n+1f(z)​dz=n!f(n)(z0​)​ 3. M阶极点

a

1

=

1

(

m

1

)

!

lim

z

z

0

[

(

z

z

0

)

m

f

(

z

)

]

(

m

1

)

a_{-1} = \frac{1}{(m-1)!} \lim_{z \to z_0}[(z-z_0)^mf(z)]^{(m-1)}

a−1​=(m−1)!1​z→z0​lim​[(z−z0​)mf(z)](m−1) 当M=1,为简单极点时:

a

1

=

lim

z

z

0

[

(

z

z

0

)

f

(

z

)

]

a_{-1} = \lim_{z \to z_0}[(z-z_0)f(z)]

a−1​=z→z0​lim​[(z−z0​)f(z)] 当

f

(

z

)

=

P

(

z

)

Q

(

z

)

f(z)=\frac{P(z)}{Q(z)}

f(z)=Q(z)P(z)​时:

R

e

s

(

f

(

z

)

,

z

0

)

=

P

(

z

0

)

Q

(

z

0

)

Res(f(z),z_0)=\frac{P(z_0)}{Q'(z_0)}

Res(f(z),z0​)=Q′(z0​)P(z0​)​ 步骤 ① 判断级数类型 ② 带入公式求留数